Αλγόριθμοι Δικτύων και Πολυπλοκότητα
Το πρόβλημα Routing and Path Coloring και οι εφαρμογές του σε πλήρως οπτικά δίκτυα

Άρης Παγουρτζής

Ευχαριστίες: οι διαφάνειες αυτές βασίστηκαν εν μέρει στην παρουσίαση της διπλωματικής εργασίας του Στρατή Ιωαννίδη (Εθνικό Μετσόβιο Πολυτεχνείο, 2002)
Άδεια Χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
Optical Fibers

• High transmission rate
• Low bit error rate
• The bottleneck lies in converting an electronic signal to optical and vice versa

All-Optical Networks

• All physical connections are optical
• Multiplexing is achieved through wavelength division multiplexing (WDM): in each fiber multiple colors are used
• Switching on routers is done passively and thus more effectively (no conversion from electrical to optical)
• Two network nodes communicate using one light beam: a single wavelength is used for each connection
Graph Representation

• All physical links are represented as graph edges
• Communication among nodes is indicated by paths
• Paths are assigned colors (wavelengths)
• Overlapping paths (i.e. sharing at least one edge) are assigned different colors
Graph Topologies
Graph Coloring (GC)

- Input: Graph G
- Feasible solution: Coloring of V using different colors for adjacent vertices
- Goal: Minimize the number of colors used, i.e. find chromatic number $\chi(G)$

- NP-hard
- There is no approximation algorithm of ratio n^{ε} for some $\varepsilon > 0$ (polyAPX-hard)
- Lower bound for $\chi(G)$: order (size) ω of maximum clique of G
Edge Coloring (EC)

• Input: Graph G

• Feasible solution: Coloring of E using different colors for adjacent edges

• Goal: Minimize the number of colors used, i.e. find chromatic index $\chi'(G)$

• Lower bound for $\chi'(G)$: maximum degree $\Delta(G)$

• [Vizing’64]: between $\Delta(G)$ and $\Delta(G)+1$ (simple graphs)
 between $\Delta(G)$ and $3\Delta(G)/2$ (multigraphs)

• [Holyer’80]: NP-complete whether $\Delta(G)$ or $\Delta(G)+1$

• 4/3 -approximable in simple graphs and multigraphs

• Best possible approximation unless P=NP
Path Coloring (PC)

- Input: Graph G, set of paths P
- Feasible solution: Coloring of paths s.t. overlapping paths are not assigned the same color
- Goal: Minimize the number of colors used
- Lower bound: maximum load L
- We can reduce it to GC by representing paths as vertices and overlapping paths as edges (*conflict graph*)
- Improved lower bound: order ω of the maximum clique of the conflict graph
Path Coloring (PC)

- Corresponding decision problem is NP-complete
- In general topologies the problem is poly-APX-hard
- Proof: Reduction of GC to PC in meshes [Nomikos’96]
Chain PC

- Solved optimally in polynomial time with exactly L colors

Ring PC

- Also known as Arc Coloring
- NP-complete [GJMP 80]
- Easily obtained appr. factor 2:
 Remove edge e and color resulting chain. Color all remaining paths that pass through e with new colors (one for each path)

 \[
 SOL_c \leq L
 \]

 \[
 SOL \leq SOL_c + L \leq 2 \cdot OPT
 \]

- W. K. Shih, W. L. Hsu: appr. factor 5/3
- I. Karapetian: appr. factor 3/2
- Idea: Use of maximum clique of conflict graph
Ring PC

- V. Kumar: With high probability appr. factor 1.36
- Idea: Use of *multicommodity flow problem*
Star PC

NP-completeness: Reduction of EC to Star PC

Approximation ratio: at least 4/3
Star PC: Approximability

Reduction of Star PC to EC in multigraphs

Approximation ratio: 4/3
Tree PC

Recursive Algorithm

if tree is a star then color it approximately
else
 – Subdivide the tree by “breaking” one of its internal edges
 – Color the resulting subtrees
 – Join sub-instances by rearranging colors
Tree PC (ii)

\[P_1 = \{ q = p \cap T_1 \mid p \in P \} \]
\[P_2 = \{ q = p \cap T_2 \mid p \in P \} \]

Approximation ratio equal to the one achieved by the approximate Star PC algorithm, thus 4/3
Bounded Degree Tree PC

- Trees of bounded degree are reduced by the above reduction to multigraphs of bounded size

- EC in bounded size multigraphs can be solved optimally in polynomial time
Generalized Tree \((S,d)\) PC

- Finite set of graphs \(S\)
- Tree of degree at most \(d\)
- Optimally (exactly) solvable in polynomial time

Idea:
- Since graphs are finite, coloring can be done in \(|P| f(S,d)\)
- Recursive algorithm, color rearrangement
- Application: Backbone Networks of customized LANs
Directed Graphs
PC in directed graphs

- **D-Chain PC**: Reduced to two undirected instances
- **D-Ring PC**: As above
- **D-TreePC**: Approximated within a $5/3$ factor. Least possible factor is $4/3$, though the algorithm known is the best possible among all greedy algorithms [Erlebach, Jansen, Kaklamanis, Persiano’97]
- **D-TreePC**: Not solved optimally in bounded degree trees
Routing and Path Coloring (RPC)

- Input: Graph G, set of requests $R \subseteq V^2$
- Feasible solution: Routing of requests in R via a set of paths P and color assignment to P in such a way that overlapping paths are not assigned the same color
- Goal: Minimize the number of colors used

In acyclic graphs (trees, chains) RPC and PC coincide
Ring RPC

“Cut-a-link” technique [Raghavan-Upfal’94]
• Pick an edge e
• Route all requests avoiding edge e
• Solve chain instance with L colors

Thm: The above is a 2-approximation algorithm
Proof: $L \leq 2 L_{opt} \leq 2 OPT$

V. Kumar: 1.68-approximation with high probability
Tree of Rings RPC

Approximation ratio 3
RPC in (bi)directed topologies

• In acyclic topologies PC and RPC coincide.

• In rings there is a simple 2-approximation algorithm.

• In trees of rings the same as before technique gives approximation ratio $10/3 (=2 \times 5/3)$.
Άδεια Χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.