Approximation Algorithms

Original presentation: Valia Mitsou
Amendments: Aris Pagourtzis
Άδεια Χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
Outline

1. Introduction
2. Vertex Cover
3. Knapsack
4. TSP
1. Introduction
Optimization Problems

- **Optimization Problem**: Every instance of the problem corresponds to some feasible solutions each of them having a value via an **Objective Function**.
- **We seek for an Optimal Solution** i.e. a feasible solution that has an optimal value.
- **Optimization problems can be either Maximization or Minimization**
- **Example**: The Vertex Cover Problem
 - Min or Max: Minimization
 - Instance: A graph
 - Feasible Solutions: Every Vertex Cover
 - Objective Function: The cardinality $|\star|$ function
 - Optimal Solution: A Vertex Cover of minimum cardinality
The PO-class

We call the class of optimization problems that can be optimally solved in polynomial time **PO class** (PO stands for P-Optimization).

Examples: **SHORTEST PATH, MAXIMUM MATCHING,** . . .
Consider a minimization problem Π such that the size (in bits) of a feasible solution is polynomial in the size of the input. Assume also that the objective function is efficiently computable.

Π: given an instance of size n find a feasible solution of minimum value.

The corresponding decision problem is:

Π_d: Given an instance of Π of size n and an integer k is there a feasible solution of value less or equal to k?

\leadsto If the decision version is polynomially solvable on n and $\log k$ then we can construct a polynomial time algorithm for the optimization version (in most cases)
Relation of P to PO (ii)

- Determine bounds A, B, such that any feasible solution is of value between A and B.
- Then do binary search in $[A, B]$ to find the optimum value k ($\log(B - A)$ runs of the decision version algorithm).
- Exploit knowledge of k in order to determine the optimum solution (not known how to do this in general).

The above (if everything works) is a polynomial time algorithm in the size of the input. Therefore, Π lies in PO.
The NPO-class: NP-Optimization Problems

- Each instance is associated with at least one feasible solution.
- The size (in bits) of any feasible solution is bounded by a polynomial in the input size \((n)\).
- The objective function is in class FP, i.e. it is \textit{poly-time computable} in the size of a feasible solution (hence also in \(n\)).

Relation to NP: the decision version of an NPO problem is in NP. Several \textit{NP-complete} decision problems correspond to problems in NPO which are consequently \textit{NP-hard (why?)}. What can we do then?

- Solve the problem exactly on limited instances.
- Find polynomial time \textit{approximation algorithms}
Notation

- Π: Problem
- I: Instance
- $\text{SOL}_A(\Pi, I)$: The solution we obtain for the instance I of the problem Π using algorithm A.
- $\text{OPT}(\Pi, I)$: The optimal solution for the instance I of the problem Π.

Note: We usually omit Π, I and A from the above notation.
Approximability

- An algorithm A for a minimization problem Π achieves a ρ_A approximation factor, $(\rho_A : \mathbb{N} \rightarrow \mathbb{Q}^+)$ if for every instance I of size $|I| = n$:

 $$\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \leq \rho_A(n)$$

- An algorithm A for a maximization problem Π achieves a ρ_A approximation factor, $(\rho_A : \mathbb{N} \rightarrow \mathbb{Q}^+)$ if for every instance I of size $|I| = n$:

 $$\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \geq \rho_A(n)$$

\Rightarrow An approximation algorithm of factor ρ guarantees that the solution that the algorithm computes cannot be worse than ρ times the optimal solution.
Approximation Schemes

Informally: We can have as good approximation factor as we want trading off time.

Formally:

- A is an Approximation Scheme (AS) for problem Π if on input (I, ε), where I an instance and $\varepsilon > 0$ an error parameter:
 - $SOL_A(I, \varepsilon) \leq (1 + \varepsilon) \cdot OPT(I)$, for minimization problem
 - $SOL_A(I, \varepsilon) \geq (1 - \varepsilon) \cdot OPT(I)$, for maximization problem

- A is a PTAS (Polynomial Time AS) if for every fixed $\varepsilon > 0$ it runs in polynomial time in the size of I.

- A is an FPTAS (Fully PTAS) if for every fixed $\varepsilon > 0$ it runs in polynomial time in the size of I and in $1/\varepsilon$.
Depending on the approximation factor we have several classes of approximation:

- **logn**: \(\rho(n) = O(\log n) \)
- **APX**: \(\rho(n) = \rho \) (constant factor approximation)
Representatives

- **Non-approximable**: Traveling Salesman Problem
- $\log n$: Set Cover
- **APX**: Vertex Cover / Ferry Cover 😊
- **PTAS**: Makespan Scheduling
- **FPTAS**: Knapsack
2. Vertex Cover
The (Cardinality) Vertex Cover Problem

Definition: Given a graph $G(V, E)$ find a minimum cardinality Vertex Cover, i.e. a set $V' \subseteq V$ such that every edge has at least one endpoint in V'.

- A trivial feasible solution would be the set V
- Finding a minimum cardinality Vertex Cover is NP-hard (reduction from 3-SAT)
- An approximation algorithm of factor 2 will be presented
Lower Bounding

A general strategy for obtaining a ρ-approximation algorithm (for a minimization problem) is the following:

- Find a lower bound l of the optimal solution ($l \leq \text{OPT}$)
- Find a factor ρ such that $\text{SOL} = \rho \cdot l$

\[\Rightarrow \text{The previous scheme implies } \text{SOL} \leq \rho \cdot \text{OPT} \]
Matchings

- **Definition**: Given a graph $G(V, E)$ a matching is a subset of the edges $M \subseteq E$ such that no two edges in M share an endpoint.

- **Maximal Matching**: A matching that no more edges can be added.

- **Maximum Matching**: A maximum cardinality matching.

⇒ Maximal Matching is solved in polynomial time with the greedy algorithm
⇒ Maximum Matching is also solved in polynomial time via a reduction to max-flow
A 2-Approximation Algorithm for Vertex Cover

- **The Algorithm**: Find a maximal matching \(M \) of the graph and output the set \(V' \) of matched vertices.

- **Correctness**:
 - Edges belonging in \(M \) are all covered by \(V' \).
 - Since \(M \) is a maximal matching, any other edge \(e \in E \setminus M \) will share at least one endpoint \(v \) with some \(e' \in M \). So \(v \) is in \(V' \) and guards \(e \).

- **Analysis**:
 - Any vertex cover should pick at least one endpoint of each matched edge \(\Rightarrow |M| \leq \text{OPT} \)
 - \(|V'| = 2|M| \)

 Thus \(\text{SOL} = |V'| = 2|M| \leq 2\text{OPT} \Rightarrow \text{SOL} \leq 2\text{OPT} \)

\(\Rightarrow \) Vertex Cover is in APX
Can we do better?

Questions

• Can the approximation guarantee be improved by a better analysis?
• Can an approximation algorithm with a better guarantee be designed using the same lower bounding scheme?
• Is there some other lower bounding methods that can lead to an improved approximation algorithm?

Answers

• Tight Examples
• Other kind of examples
• This is not so immediate...
Tight Examples

• A better analysis might imply an \(l' \) s.t. \(l < l' \leq \text{OPT} \). Then there would be a \(\rho' < \rho \) s.t. \(\rho' \cdot l = \rho' \cdot l' \), so

\[
\text{SOL} = \rho \cdot l = \rho' \cdot l' \leq \rho' \text{OPT}
\]

Thus we could obtain a better approximation factor \(\rho' < \rho \).

• Definition: An infinite family of instances in which \(l = \text{OPT} \) is called Tight Example for the \(\rho \)-approximation algorithm.

• If \(l = \text{OPT} \) then there is no \(l' > l \) s.t \(l' \leq \text{OPT} \).

\(\rightsquigarrow \) So we can’t find a better factor by better analysis.
Tight Example for the matching algorithm

- The infinite family $K_{n,n}$ of the complete balanced bipartite graphs is a tight example.
- $|M| = n = \text{OPT}$. So the solution returned is 2 times the optimal solution.
Other kind of examples

- Using the same lower bound $l \leq \text{OPT}$ we might find a better algorithm with $\rho' < \rho$ that computes $\text{SOL} = \rho' \cdot l$. This would imply a better ρ' approximation algorithm.

- An infinite family where $l = \frac{1}{\rho} \text{OPT}$ implies that $\text{SOL} = l \cdot \rho' = \frac{1}{\rho} \rho' \text{OPT} < \text{OPT}$ (contradiction).

Thus it is impossible to find another algorithm with better approximation factor using the lower bound $l \leq \text{OPT}$.
Using the matching lower bound

- The infinite family K_{2n+1} of the complete bipartite graphs with odd number of vertices have an optimal vertex of cardinality $2n$.

- A maximal matching could be $|M| = n = \frac{1}{2}\text{OPT}$. So the solution returned is the optimal solution.
Other lower bounds for Vertex Cover

- This is still an open research area.
- Best known result for the approximation factor (until 2004) is $2 - \Theta\left(\frac{1}{\sqrt{\log n}}\right)$ (due to George Karakostas)
- Uses Linear Programming.
3. Knapsack
Pseudo-polynomial time algorithms

- An instance I of any problem Π consists of objects (sets, graphs, . . .) and numbers.
- The size of I ($|I|$) is the number of bits needed to write the instance I.
- Numbers in I are written in binary.
- Let I_u be the instance I where all numbers are written in unary.
- **Definition:** A pseudo-polynomial time algorithm is an algorithm running in polynomial time in $|I_u|$.
- Pseudo-polynomial time algorithms can be obtained using Dynamic Programming.
Strong NP-hardness

- **Definition**: A problem is called strongly NP-hard if any problem in NP can be polynomially reduced to it and numbers in the reduced instance are written in unary.

- **Informally**: A strongly NP-hard problem remains NP-hard even if the input numbers are less than some polynomial of the size of the objects.

⇒ Strongly NP-hard problems cannot admit a pseudo-polynomial time algorithm, assuming $P \neq NP$. (else we could solve the reduced instance in polynomial time, thus we could solve every problem in NP in polynomial time. That would imply $P = NP$.)
The existence of FPTAS

Theorem: For a minimization problem Π if \forall instance I,

- OPT is strictly bounded by a polynomial of $|I_u|$ and
- the objective function is integer valued

then Π admits an FPTAS $\Rightarrow \Pi$ admits a pseudo-polynomial time algorithm

\sim A strongly NP-hard problem (under the previous assumptions) cannot admit an FPTAS unless $P = NP$
The Knapsack Problem (i)

- **Definition**: The discrete version is given a set of \(n \) items \(X = \{x_1, \ldots, x_n\} \) where a profit: \(X \rightarrow \mathbb{N} \) and a weight: \(X \rightarrow \mathbb{N} \) function are provided and a “knapsack” of total capacity \(B \in \mathbb{N} \), find a subset \(Y \subseteq X \) whose total size is bounded by \(B \) and maximizes the total profit.

- **Definition**: The continuous version is given a set of \(n \) continuous items \(X = \{x_1, \ldots, x_n\} \) where profit and weight function are provided and a “knapsack” of total capacity \(B \in \mathbb{N} \), find a sequence \(\{w_1, \ldots, w_n\} \) of portions where \(\sum_{i=1}^{n} w_i = B \) that maximizes the total profit.
The Knapsack Problem (ii)

- The greedy algorithm (sort the objects by decreasing ratio of profit to weight) solves in polynomial time the continuous version.

- The greedy algorithm can be made to perform arbitrarily bad for the discrete version.

- Discrete Knapsack is NP-hard.

- Pseudo-polynomial time and FPTAS algorithms will be presented for the discrete version.

- For now on we focus on discrete knapsack and call it “knapsack”
A pseudo-polynomial time algorithm for knapsack (i)

- Let P be the profit of the most profitable object
- nP is a trivial upper bound on the total profit
- For $i \in \{1, \ldots, n\}$ and $p \in \{1, \ldots, nP\}$ let $S(i, p)$ denote a subset of $\{x_1, \ldots, x_i\}$ whose total profit is exactly p and its total weight is minimized
- Let $W(i, p)$ denote the weight of $S(i, p)$ (∞ if no such a set exists)
A pseudo-polynomial time algorithm for knapsack (ii)

The following recursive scheme computes all values $W(i, p)$ in $O(n^2P)$

- $W(1, p) = weight(x_1)$, if $p = profit(x_1)$, ∞ else
- $W(i + 1, p) =$
 \[
 \begin{cases}
 W(i, p), & \text{if } profit(x_{i+1}) > p \\
 \min\{W(i, p), weight(x_{i+1}) + W(i, p - profit(x_{i+1}))\}, & \text{else}
 \end{cases}
 \]

The optimal solution of the problem is $\max\{p \mid W(n, p) \leq B\}$

The optimal solution can be computed in polynomial time on n and P
An FPTAS for Knapsack

- **Idea:** The previous algorithm could be a polynomial time algorithm if P was bounded by a polynomial of n
- Ignore a number of least significant bits of the profits of the objects
- Modified profits profit' should now be numbers bounded by a polynomial of n and $\frac{1}{\varepsilon}$ (ε is the error parameter)
- The algorithm:
 1. Given $\varepsilon > 0$ define $K = \frac{\varepsilon P}{n}$
 2. Set new profit function profit', $\text{profit}'(x_i) = \lceil \frac{\text{profit}(x_i)}{K} \rceil$
 3. Run the pseudo-polynomial time algorithm described previously and output the result
Analysis

Theorem: The previous algorithm is an FPTAS

1. SOL $\geq (1 - \varepsilon)\text{OPT}$

2. Runs in polynomial time in n and $\frac{1}{\varepsilon}$

Proof:

1. Let S and O denote the output set and the optimal set
 - $\text{profit}'(x_i) = \left\lceil \frac{\text{profit}(x_i)}{K} \right\rceil \Rightarrow \text{profit}(x_i) \leq K \cdot \text{profit}'(x_i) \leq \text{profit}(x_i) + K$
 - $\forall A \subseteq X: \text{profit}(A) \leq K \cdot \text{profit}'(A) \leq \text{profit}(A) + n \cdot K$
 - $K = \frac{\varepsilon P}{n}$, $\text{profit}'(S) \geq \text{profit}'(O)$, $\text{OPT} \geq P$

 Thus, $\text{SOL} = \text{profit}(S) \geq K \cdot \text{profit}'(S) - nK \geq K \cdot \text{profit}'(O) - nK \geq \text{profit}(O) - nK = \text{OPT} - \varepsilon P$

 $\geq (1 - \varepsilon) \cdot \text{OPT}$

2. The algorithm’s running time is $O(n^2 \left\lceil \frac{P}{K} \right\rceil) = O(n^2 \left\lceil \frac{n}{\varepsilon} \right\rceil)$
4. TSP
Hardness of Approximation

To show that an optimization problem Π is hard to approximate we can use

- A **Gap-introducing reduction**: Reduces an NP-complete decision problem Π' to Π
- A **Gap-preserving reduction**: Reduces a hard to approximate optimization problem Π' to Π
Gap-introducing reductions (i)

Suppose that Π' is a decision problem and Π a minimization problem (similar for maximization). A reduction h from Π' to Π is called gap-introducing if:

1. Transforms (in polynomial time) any instance I' of Π' to an instance $I = h(I')$ of Π

2. There are functions f and α s.t.
 - If I' is a ‘yes instance’ of Π' then $\text{OPT}(\Pi, I) \leq f(I)$
 - If I' is a ‘no instance’ of Π' then $\text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$
Gap-introducing reductions (ii)

Theorem: If Π' is NP-complete then Π cannot be approximated with a factor α

Proof: If Π had an approximation algorithm of factor α then $\text{SOL} \leq \alpha \cdot \text{OPT}$. So,

- I' is a ‘yes instance’ of $\Pi' \Rightarrow \text{SOL} \leq \alpha \cdot \text{OPT}(\Pi, I) \leq \alpha \cdot f(I)$
- I' is a ‘no instance’ of $\Pi' \Rightarrow \text{SOL} > \text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$

Then by using the approximation algorithm for Π we could be able to determine in polynomial time whether the instance I' is ‘yes’ or ‘no’.

Since Π is NP-complete, this would imply $P = NP$
Gap-preserving reductions (i)

Suppose that Π' is a minimization problem and Π a minimization (similar for other cases).
A reduction h from Π' to Π is called gap-preserving if:

1. Transforms (in polynomial time) any instance I' of Π' to an instance $I = h(I')$ of Π

2. There are functions f, f', α, β s.t.
 - $\text{OPT}(\Pi', I') \leq f'(I') \Rightarrow \text{OPT}(\Pi, I) \leq f(I)$
 - $\text{OPT}(\Pi', I') > \beta(|I'|) \cdot f'(I') \Rightarrow \text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$
Gap-preserving reductions (ii)

Theorem: If Π' is non-approximable with a factor β then Π cannot be approximated with a factor α unless $P = NP$

Proof: If Π had an approximation algorithm of factor α then $\text{SOL} \geq \alpha \cdot \text{OPT}$. So,

- $\text{OPT}(\Pi', I') \leq f'(I') \Rightarrow \text{SOL} \leq \alpha \cdot \text{OPT}(\Pi, I) \leq \alpha \cdot f(I)$
- $\text{OPT}(\Pi', I') > \beta(|I'|)f'(I') \Rightarrow \text{SOL} > \text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$

But Π' cannot be approximated with a factor β means that there is an NP-complete decision problem Π'' and a gap-introducing reduction from Π'' to Π' s.t.

- I'' is a ‘yes instance’ of $\Pi'' \Rightarrow \text{OPT}(\Pi', I') \leq f''(I')$
- I'' is a ‘no instance’ of $\Pi'' \Rightarrow \text{OPT}(\Pi', I') > \beta(|I'|) \cdot f''(I')$

Thus, by running the algorithm for Π we could decide Π''. This implies $P = NP$
The Traveling Salesman Problem

Definition: Given a complete graph $K_n(V, E)$ and a weight function $w : E \to \mathbb{Q}$ find a tour, i.e. a permutation of the vertices, that has minimum total weight.

• The TSP problem is NP-hard

• TSP is non-approximable with a factor $\alpha(n)$ polynomial in n, via a gap-introducing reduction from Hamilton Cycle.

Definition: Given a graph $G(V, E)$ a Hamilton Cycle is a cycle that uses every vertex only ones.

• To determine whether G has a Hamilton Cycle or not is NP-complete.
TSP is non-approximable (i)

Reduction: $G(V, E)$, $|V| = n$, is an instance of Hamilton Cycle. The instance of TSP will be K_n with a weight function w, $w(e) = 1$ if $e \in E$ else $w(e) = n + 2$. Then

- If G has a Hamilton Cycle then $\text{OPT}(\text{TSP}) = n$
- If I' is a ‘no instance’ of Π' then $\text{OPT}(\text{TSP}) > 2n$
TSP is non-approximable (ii)

〜 TSP is APX-hard, i.e. there exist a constant α (in the example 2) that TSP cannot be approximated with factor α, unless $P = NP$

〜 Bonus!!! In the reduction if we set $w(e) = \alpha(n) \cdot n$, $e \notin E$ then we cannot have an $\alpha(n)$ approximation factor for TSP. Thus TSP is non-approximable
THE END!!!
Χρηματοδότηση

Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτηθεί μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.